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Liquid-vapor coexistence curves for selected group IA and I I A  metals arc calculated. The Gibbs- 
Bogoljubov variational method is used to find a least upper hound to the Helmholtz energy of the liquid 
phase. The hard sphere liquld is chosen to rcpresent the structure of the metal melt, and the empty-core 
pseudopotential is chosen to the model the potential cnergy of interaction i n  the liquid phase. The vapor 
phase is modeled as an ideal gas mixture of monomers and  dirners, with the distribution of mole fractions 
determined by the canonical ensemble partition function. Parameters are chosen that model coexistence 
properties between the melting temperature and the boiling temperature of the liquid metals. Good 
results are obtained for representative group I A  and group IIA metals. 

K E Y  WORDS: Pseudopotential. ciimers. liquid-vapor coexistence. thermodynamic properties. Group IA .  
Group I IA.  hard spheres. 

INTRODUCTlON 

From a materials processing standpoint. an  estimation of the thermodynamic prop- 
erties of liquid metal systems is important when defining process limitations. Pro- 
cessing methods such as melt-zone refinement, rapid thermal processing, and bulk 
crystal growth require knowledge of liquid vapor coexistence for process design. 
Similarly, the mechanics of laser ablation techniques for thin film deposition are 
limited by the thermodynamics of the metals involved in the system. The experimen- 
tal measurement of thermodynamic properties for saturated metal systems is diffi- 
cult; not only are the temperatures involved very high, but the metal is often very 
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170 M. MONTOYA e ta l .  

reactive at high temperatures. Thus, it is important that methods are developed that 
allow for the theoretical prediction of metal coexistence properties. 

As the complexity of metal alloys increase, so do  the permutations available for 
alloy design. The development of an accurate, predictive theory for the ther- 
modynamic properties of liquid metal melts becomes important to minimize the 
multitude of experiments that will be necessary to characterize liquid-vapor coexist- 
ence behavior. Before simple models are applied to more complex binary systems, 
parameters and models must be developed and refined for single component sys- 
tems. This paper addresses such refinement. 

A recent attempt at modeling sodium liquid-vapor coexistence properties has 
given satisfactory results from the melting temperature to near the critical tempera- 
ture'. Improvements from older techniques' include the modeling of dimers in the 
metal liquid phase, and parameterization of the first Fourier component of the 
empty-core pseudopotential to match the experimental internal energy of the liquid 
system at its melting temperature. In this paper, this approach has been extended to 
the group IA and group IIA metals for which experimental spectroscopic data is 
available for dimer species. 

LIQUID THEORY 

The theory for the calculation for the Helmholtz energy of the liquid phase is 
established3, but an outline of the theory is provided to establish the differences 
between these calculations and the results from previous attempts. The Helmholtz 
energy of the liquid system is 

F = F,, + F,, (1) 

where F,, is the contribution to the Helmholtz energy from the entropy of an ideal 
liquid and the entropy of the reference fluid, and F,, is the contribution to energy 
due to the arrangement of core ions within the electron gas. The contributions due 
to the interactions of ion cores with the electron gas are model dependent, and for 
the empty-core pseudopotential model these contributions are 

( 2)  
where F,, is the contribution due to the electron gas medium, F ,  is the zeroth 
Fourier component contribution, F ,  is the second order (or band structure) energy, 
and F ,  is the Madelung contribution to the energy of the system. 

The four contributions to the Helmholtz energy of the liquid system are given by 

F,, = F,, + F1+ F2 + F, 

(3) 

(4) 
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LIQUID-VAPOR EQUILlBRIUM 171 

where K ,  is the magnitude of the Fermi wavevector, n is the ion core density of the 
fluid, ~ ( q , n )  is the dielectric function of an electron gas, Z is the metal valence, v(q) is 
the electron-ion pseudopotential, a(q, n) is the structure factor of the reference fluid, 
and yeg is the constant volume heat capacity of the electron gas. The electron gas 
energy includes the terms for electron-electron repulsion, and the exchange and 
correlation energy contributions due to Nozieres and Pines4. The rigorous express- 
ion for the low temperature value of the electron heat capacity normally has 
exchange and correlation terms5, but the independent Fermion result 

2 

Y e g  = (2) (7) 

is expected to give accurate results throughout the temperature range of these 
simulations. The Itsimaru-Utsumi approximation to the electron gas dielectric 
function &(q, n)  is chosen for its simplicity and accuracy'. 

A system of hard spheres is chosen as the reference fluid for this calculation; this 
choice of reference system simplifies some of the terms present in the expression for 
the pseudopotential contribution to Helmholtz energy. An analytic approximation 
to the hard sphere structure factor is found by solving the Percus-Yevick equation, 
avoiding the need for molecular dynamics simulation at each density'. The express- 
ion for the Madelung contribution to the Helmholtz energy is also simplified to the 
analytic expression F ,  = Zz aM where 

and q is the packing fraction for a hard sphere fluid, given in terms of the density n 
and the hard sphere diameter c by 

nc3n  q=- 
6 (9) 

The electron-ion pseudopotential chosen for this application is the empty-core 
potential model' 

(10) 
4n 
4 

v(q)= ->Zcos (qRc)  

Substitution of (10) into (4) leads to the result 

F ,  = 2nnZ2Rf 

which though analytically correct often leads to a poor representation of the 
Helmholtz energy of the liquid metal system. Other atempts at calculating the 
liquid-vapor coexistence curves for sodium metal have corrected F ,  by introducing 
a cubic polynomial expression in terms of density for the energy contribution', 
which has coefficients fit to reproduce experimental density measurements of the 
saturated liquid phase. Since the emphasis of this study is the creation of a predictive 
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172 M. MONTOYA r ta l .  

tool to be used for calculation of engineering properties, the experimental 
parameters gathered are kept to a minimum, and the cubic polynomial representa- 
tion of the first Fourier component is eliminated. 

Terms that contribute to the Helmholtz energy due to the choice of the hard 
sphere reference system are also well defined. The Helmholtz energy of the hard 
sphere system F,, has two terms 

3 
Fh,=jk,T-TSh, 

The hard sphere entropy 

s,, = Sgas + s,, 
is composed of the ideal term 

where rn is the mass of an atom, and the contribution due to the entropy of the ideal 
hard sphere fluid 

The hard-sphere model has the single variational parameter cr. Thus, the least 
upper bound to the Helmholtz energy is calculated by minimizing the right-hand 
side of equation ( 1 )  with respect to the hard sphere diameter. A single variational 
condition defines this minimum 

= O 

This condition also simplifies the expressions for the entropy and the pressure of the 
system writen in terms of the total Helmholtz energy of the system, which are now 
given by the partial derivatives 

s =  -(;I 
n. u 

and 

Once the Helmholtz energy is known, the Gibbs energy, which is the chemical 
potential of a single-component system, is found by making a pressure-volume 
correction to the approximated Helmholtz energy 

p = G = F + PV (19) 
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The Gibbs energy of a system is calculated from the canonical ensemble partition 
function of a ~ys t em" . '~ ,  so that if the relevant energy levels of system are known, 
the population of states is also known, and the Gibbs energy for that system can be 
calculated. If an ideal gas model is chosen for the monomers of the system, and a 
rigid rotor approximation for the dimers, constants found using vapor phase spec- 
troscopy will yield the information necessary to calculate the Gibbs energy of a n  
ideal gas consisting of monomers and  dimers. 

Assume a vapor system with a constant number of atoms N, which is made up of N ,  
monomers and N, dimers. The number of atoms in the vapor phase is fixed, so that 

N = N, + 2N, (20) 

Both constituent 1 and constituent 2 are assumed to occupy the volume of the 
system I! The Helmholtz energy of this system consists of two contributions 

Both terms are expressed in terms of the canonical ensemble partition function Zi, 
which for each species i in the gas phase contributes 

to the Helmholtz energy. 
The partition function each the monomer is given by the expression 

where g is the degeneracy due to spin and angular momentum of the system. This 
partition function assumes the monomer is a non-interacting collection of point 
masses of mass M .  

The dimer is modeled as a rigid rotor, which allows the approximation of the 
rotational and vibrational contributions to the Helmholtz energy. The partition 
function for the rigid rotor is 

(24) 
z,=( 27-t M k,T )3"I/exp($)( ~ k ,  2 h 2  M R ,  )(gj = iz 

27-t h 2  

given the diatomic binding energy E,,, the bond length between atoms in the diamotic 
R ,  and the angular frequency of vibration o. The last two factors in (24) correspond 
to contributions to the partition function due to rotational and vibrational modes, 
respectively. It is assumed that the high temperature approximation to this partition 
function is valid, and  experimental values for metals in their vapor state confirm the 
validity of this assumption. 
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174 M. MONTOYA etal .  

The pressure of the system is calculated from the volume derivative of the 
Helmholtz energy 

The Gibbs energy per atom is given by 

from which the chemical potential for each constituent is calculated and equated to 
satisfy the conditions of thermodynamic equilibrium. If this is done for the dimeriz- 
ation reaction 

2 x  * x, 
then chemical equilibrium must satisfy 

where A is a constant corresponding to the square root of the chemical potential of 
the diatomic. Two expressions result from this equilibrium equation: N ,  = AZl and 
N ,  = 1’ 2,. The fraction of each atom in the gas phase is expressed as a function of 
;I and the specific volume of the vapor SZ, 

which satisfies the requirement that the sum of the fractions of each constituent 
must be one 

( A i l  + 2A2i,)R, = 1 

p ,  == ( A i l  + A 2 [ 2 )  kBT9 

(30) 

The system pressure is now defined in terms of the partition function result 

(31) 

and the Gibbs energy of the system is the simple expression 

G, = k B T  In2 (32) 

The contributions to the Gibbs energy due to the electron occupation of excited 
states is assumed to be very small, since the electronic energies involved contribute 
little to the Helmholtz energy at  the temperatures of interest. For metals with high 
critical points, it is increasingly important to include electronic terms in the canoni- 
cal ensemble to increase the accuracy of the energy in the vapor phase calculation. 
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COMPUTATIONAL PROCEDURE 

A computational procedure for the calculation of saturated conditions is now 
outlined. If the Gibbs energy of the liquid phase is equated with the Gibbs energy of 
the vapor phase, an expression for d at equilibrium is apparent, and given by 

where Eion is used to correct the liquid energy to the same reference as the mon- 
atomic vapor2. The pressure equation allows for construction of an equation that 
defines equilibrium for the system 

Since equation (34) is a' function of liquid volume only, solutions are found by 
bracketing the roots and using a numerical root finder to solve for liquid volume. 
Once the liquid volume is found, information on the pressure, monatomic and 
diatomic fractions, Gibbs energy, and vapor volume immediately follows. 

PARAMETERS 

The calculation of vapor liquid equilibrium is influenced by small changes in the 
calculated Gibbs energy of the liquid and vapor systems. Small errors in the Gibbs 
energy calculation may result in large deviations from experimental data. Several 
parameters are available in the calculation that allow adjustments that compensate 
for the deviation of the experimental Helmholtz energy of the liquid system from the 
Helmholtz energy calculated using the empty-core pseudopotential. 

As is the philosophy of other calculations, the first Fourier component of the 
Helmholtz energy is adjusted so that the calculated internal energy of the liquid 
system at the melting temperature matches an experimental value. The calculated 
internal energy of the liquid system is given by the five terms 

In order to calculate the coefficient for the adjusted first Fourier component, the 
temperature and density of the liquid are fixed to the experimental value, and the 
internal energy of the liquid calculated. The first Fourier component, F , ,  is adjusted 
until the calculated internal energy matches the experimental internal energy of the 
system. 

A second adjustment to the calculation involves the relative zeroes of energy 
between the liquid and the vapor phase. The quantity Eion, which represents the 
energy needed to excite the valence electrons from the outer electron shell into the 
conduction band of the liquid metal, is calculated so that the equilibrium condition 
given by (34) is satisfied at the boiling point of the metal. 
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176 M. MONTOYA rrul. 

The parameters incorporated into the liquid-vapor coexistence model are given in 
Table 1. Third decimal place corrections are made to the experimental internal 
energy for each of the metal systems. The degeneracy g for the rigid rotor dimer 
model is one of the group IA elements, and two for the group IIA elements. 

RESULTS 

The liquid density versus temperature plot for group IA metals is shown in Figure 1, 
and the group IIA metals studied are shown in Figure 2. The calculated results agree 
closely with assessed thermodynamic data between the melting temperature and 
boiling temperature of the metal systems. Above the melting temperature, there is a 
trend in calculation away from the assessed data. The calculated liquid density is 
higher than the assessed experimental data at the same temperature, and this devi- 
ation increases with increasing temperature. 

The calculated vapor pressures of the saturated metal systems are in good agree- 
ment with assessed experimental data. Figure 3 compares the plots of 
log,,(pressure) versus inverse temperature for the Group IA systems. The calculated 
data is nearly linear, indicating a constant heat of vaporization for each of the 
metals over the entire temperature range of the system. The same is true for the 
Group IIA metals illustrated in Figure 4. 

The results from Osman and Young' show calculated monomer fractions that 
deviate from experimental data at high temperature. Each of the metals calculated in 
this survey show the same deviation. Monomer fractions are too high at lower 
temperatures, but as the temperature increases above the boiling temperature, the 
monomer fraction becomes smaller than that experimentally observed. Decreased 
monomer fraction at a given temperature decreases the calculated pressure and 
Gibbs energy of the vapor system below experimental values. Since the Gibbs 
energy of the liquid system increases with decreasing density along the saturated 
properties curve for the metal systems, the liquid density is affected, leading to the 
calculation of liquid densities that are too high at temperatures above the boiling 
temperature. 

Table 2 shows the calculated values for the ionization energy of the metal system, 
and compares the values to those obtained through experiment. Also shown is 
the boiling temperature of the modeled metal system, calculated by regression 
through the calculated saturated pressure data. Again, the theory closely matches 
experiment. 

As concluded in previous ~ t u d i e s ' . ~ . ~ ,  the nearly free electron behavior of the 
metal system is an adequate representation of the liquid metal system, when modi- 
fied to account for differences between the experimental and theoretical internal 
energy at the metal melting temperature. The hard-sphere fluid is an adequate liquid 
structure representation for both group IA and group IIA metals. Calculated ther- 
modynamic properties of the metal systems are well within experimental error 
between the melting points and boiling points of the liquid metals. 

The accuracy of the calculation is limited in two respects. The validity of the vapor 
phase model may be questioned at higher temperatures, as the density of the vapor 
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Figure 1 The continuous curves show calculated liquid number density (atoms/m3) versus temperature 
for various Group I A  metals. The assessed experimental data (x) are from Vargaftik16. The experimental 
melting temperature and density are marked by the circles. 
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Figure 2 The continuous curves show the calculated number density (atoms/m’) versus temperature (K) 
curve for select group IIA elements. The experimental data shown (x) are from the CRC Handbook of 
Chemistry and Physics, 34th ed.”. The experimental melting temperature and density are marked by the circles. 
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Figure 3 The log,,(pressure in atmospheres) versus inverse temperature (1/K) curves for selected Group 
IA metals. The experimental points (x) are assessed data from Hultgren, et 0 1 . ' ~ .  Rubidium assessed data 
is marked with the + symbol to distinguish the points from the data for cesium. 
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Figure 4 The log,,(pressure in atmospheres) versus inverse temperature ( l /K)  curves for selected Group 
IIA metals. The expermental points (x) are assessed data from Hultgren, et 0 1 . ' ~ .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



180 M. MONTOYA ef id. 

Table 2 lonization energy values, calculated t o  fit experimental data at the boiling temperature. Also 
included are the predicted melting temperatures from Antoine equation curve fits to the calculated 
pressure and temperature data (log,,,(P)= A / T  + 5). Experimental curves are from the C R C  Htrntlhook of 
Chernistry und  physic,.^. 74th edition", 

Eleinerit E.xprrinrmiu/ Cn/culntrd Esperinienrul Colt~ullitc~d 
loniztrt ion lonization Boiling Boiliny 
Energy  ( e V )  Enery!, ( e V )  teinperciture ( K )  femptwirure ( K )  

Li 5.392 5.945 1615 161 I 
Na 5.139 5.235 1156 1 I63 
K 4.341 4.4 I 0  1032 1053 
Rb 4.177 4.095 96 I 980 
cs 3.894 3.824 944 952 
Mg 22.681 23.22 1363 1380 
Ca 17.984 18.62 1757 1768 

phase increases. Just as the concentratioii of dimers increases with increasing 
temperatures and increasing density, so should the concentration of more 
complex clusters increase as the metal vapor reaches densities close to that of the 
liquid state. 

The empty core representation of the potential energy function may also 
be an inaccurate representation of the metallic liquid at high temperatures, 
as the density of the liquid melt decreases. The metal-insulator transition in the 
alkali metals such as cesium occurs in the liquid arm of a density temper- 
ature plot". For densities lower than the transition density the empty- 
core pseudopotential representation of the liquid metal is not valid, since the 
conduction electrons recombine in various arrangements with the metal ion 
cores. As a result, the postulated empty-core pseudopotential model is not capable 
of calculating the critical point of an alkali metal in its present form, since the 
model assumes an electron gas-ion core interaction at all liquid densities. A 
qualitatively different liquid phase potential which predicts the metal-insulator 
transition must be incorporated into the liquid model to match experimental 
results. 
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